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Abstract:

It was recently concluded that bends of radii suitable for Integrated
Optics applications are only realizable using sirongly guiding curved dielec-
tric guides. While curved dielectric slabs of weak optical guidance and small
curvatures have been extensively studied in the literature, strongly guiding
curved slabs have not gained enough examination. This paper discusses
guided mode propagation in strongly guiding, strongly curved dielectric slabs.
It is found that differences in propagalion consiant between modes of such
slabs can be made one order of magnitude larger than those berween straight
slab modes by coptrolling slab curvature. The Beam Propagation Method is
used 1o verify the ‘analytically obtained resuits.

I. Introduction

It was recently concluded that bends of radii suitable for Integrated
Optics applications arc only realizable using strongly guiding curved diclcc-
tric guides [1]. Such guides of rectangular cross section can be used for low-
loss directional change to facilitate optical beam manipulation in a small size
chip. Using the effective relractive index method reduces the analysis of a
curved reciangular diclectric guide to the casc of a curved diclectric slab
{2.3]. Curved diclectric slabs of weak optical guidance, and small curvatures
have been extensively studied in the literature [4-7]. Duc 10 excessive radia-
tion losses, only strongly guiding slabs of large curvawres arc of intercst.
These have not yet gained enough examination [1,8].

In this paper, we present a study of guided modces in strongly guiding,
strongly curved dielectric slab guides. In pant II, the nature of propagation
modes in curved slabs, and the classification of guided modes into suraight-
slab- like and edge guided modes are bricfly discussed. Part 11l contains the
analysis of guided modes in the strongly guiding casc. Interesting characteris-
tics of cdge guided modes that appear in srrongly guiding slabs are presented.
In part 1V, an independent verification of the validity of thc analysis of
guided modes, of part 111, is carried out using the Beam Propagation Method.
The Beam Propagation algorithm used is described in the Appendix.

I1. Guided Modes of the Curved Dielectric Slab

Azimuthally-propagating modes of the curved dielectric slab have either
their electric or magnetic fields parallel to the slab boundaries. For an TE
mode, this electric field is given by :
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where r, and ¢ arc the radial and azimuthal coordinatcs, respectively |, j is
the square root of (-1), and an /™ factor is suppressed. v, the azimuthal pro-
pagation constant, is the mode eigen value which is generally complex, and
C.(r) is the corresponding eigen function, giving the radial dependence of the
modal field. v can be expressed as :

NV, =ifiVi (2.a)
v, <V, (2b)
where a non-severely attenuated mode is assumed.
Substituting (1) into the Wave equation gives C,(r) in terms of Bessel func-
tions of the order v. :
Eliminating arbitrary constanis using electric and magnetic field continuity
conditions results in a very complicated eigen value equaton [2,3.5].
Nevertheless, a determination of the range of values of the real pan, v,, for
guided mode solutions is possible using geometrical optics.
Each guided mode can be considered as a group of rays, or local plane
waves having propagation and auenuation factors given by :
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Due 1o curvature, both factors are inversely proportional to the radial coordi-
nate. All guided rays in the curved slab suffer total intcrnal reflection at the
outer slab boundary. Reflection of optical rays at the outer slab boundary is a
frustrated total internal reflection which gives rise to curvature radiation
losses [9]. Some guided rays suffer total internal reflecton at both slab boun-
daries. Mcanwhile, other rays tum 1o propagaic in the azimuthal direction
before reaching the inner boundary. Fig.1 illustraies both catcgories of guided
rays.

Fig.1 Ray optics representation of guidance in a curved slab waveguide.
Rays (1), and (2) are slab-, and edge-guided , respectvely.

Correspondingly, two categories of guided modes of the curved slab exist. For
a curved slab of inner and outer radii of curvawre of Ry, and R, , and core
and cladding refractive indices of n, and n’, respectively, both calegories
have values of v, that satisfy [3,4):

nk, Ry2v,2n'k Ry @

where k, is the free space wave number. The first category is straight-slab-
like modes, for which : —

nk,Ryzv,2n'k, Rz (5)
The second category is edge-guided modes, which have :
nk, Rzzv,2zn ks R ©

in a strongly guiding slab with n R, € n" R . only edge guided modes exist.



L Instead of formulating modal solutions in terms of Bessel functions, a
conformal mapping can be used o reduce the curved slab structure 0 an
cquivalent nonhomogencous straight slab (10]. If R, is the radius of curvaturc
at the centre of a curved slab of refraclive index n(r), the wransformation :

. w =R, In ;‘: )

vhere W=u+jv T =7l

educes the curved slab to an equivalent straight one with refractive index :
AW =n() ™ (®)

A modc of the curved slab with cigen value v corresponds 10 a mode of the
=quivalent straight slab with eigen value :

Be-jo=— ©)

Re

The modal ficld at the coordinate u of the straight slab, and hence at the
corresponding radius r of the curved slab, is cither cvancscent or oscillating
depending on whether the propagation conswant, B, is greater or less than
k,n(u), respecuvely. Fig.2 illustraies the transformed slab with the two
ategorics of guided modes.
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Fig.2 Refractive index profile of the cquivalent straight slab, and modal
propagation constants for straight-slab-like, and edge-guided modes.

II1. Analysis of guided modes in strongly guiding slabs

1) Staight-slab-like modes

As can be seen from Fig.2, straight-slab-like modes have optical fields
with oscillatory radial profiles within the slab core, while evanescent in the
-laddings. Both in stongly and weakly guiding slabs, these modes can be
analyzed using a WKB approximation [3,5]. A comparison of published treat-
ments of straight-slab-like modes in weakly guiding slabs and a direct appli-
-ation of a regular WKB approximation o these modes in strongly guiding
slabs can be found in Ref.[3].

2) Edge guided modes

2.a. The Whispering Gallery approximation : Edge guided modes have

ield profiles that are evanescent with decreasing radius at some point in the
lab core before reaching the inner boundary and hence the presence of the
his boundary has only a litle effect on their properties. This effect can be
gnored in an approximate treatment of the modes and hence only the outer
»oundary is taken into consideration. This approximation is known as the
Whispering Gallery approximation [11]. For Whispering Gallery modes,
~(r) can be written as :
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where J., and 11,? are Bessel function of the first kind, and Hankel function
of the second kind, respectively, of the same order v. The characteristic cqua-
tion for TE modes simplifics 10 :

at B _L(p) (1

n H2(p) v
where p , and p’ are equal W nk,R, and n’k,R,, respectively, and the
derivatives are taken with respect to the arguments. For the values of J, and
1,% involved in cquation (11) we use the Debye Asymplotic expansions of
Bessel functions [12]. for which the condition given by equation (4) for
guided modes holds. Substituting these asymplotic expansions into cquation
(11) gives the following characterisuc cquation [2,3]:
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where M is the modc order, and the tan™ is 1o be taken in the first quadrant.

An approximatc closed-form solution o (12) can be found in the litera-
ture for modes far from cut off [2,7], for which :
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This condition generally holds for edge guided modes of weakly curved slabs.
For strongly curved, strongly guiding slabs, however, we often find modes
where the above condition is not satisfied. Instead, almost in all cases, we
have the following condition satisfied :

vi-p? )
Ivin

(14)

< 1

exp —

where v, is the real parnt of the eigen value v as given by equation (2).
Hence, v, can be obtained from equation (12) by ignoring the exponential
term and solving numerically. The imaginary pan, v;, can be evaluated from
the radiated power per unit length in the propagation direction, which can be
calculated from the radiated power at infinity. For TE modes, this gives [3,6):

= f[i]
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2.b. Differences in modal propagation constanis :

edge guided modes by the method outlined above, modal propagation factors
at the centre of the curved slab can be calculated. Comparing differences in
these propagation constants with those between modes of a similar straight
slab, it is found that in strongly guiding slabs, differences in modal propaga-
lion constants can be controlled by slab curvature over almost an order of
magnitude. Fig.3 shows variation of the difference in propagation constant
between the fundamental and second order modes of curved dielectric slabs
with core and cladding refractive indices 3.6, and 34 respectively, and
different slab widthes.

The large differences in modal propagation constant between modes of
a swrongly guiding, swongly curved dielectric slab is justified since different
modes of such a slab effectively propagate in regions of different equivalent
refractive indices [3].

15)

After solving for v of
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Fig.3 Variation of the difference in propagation consiant between the
fundamental and second order modes of curved dielectric slabs with
core index n = 3.6, cladding index n’ =34, and widthes W = 2 - §
Hm, at a wavelength of 0.87 wm, versus reciprocal of the mean slab
radius, R, . Curves end at the left hand side where the second order
mode becomes straight-slab-like for which a Whispering Gallery
approximation is no longer valid. Crosses on the y-axis indicate
differences in similar straight slabs.

IV. Propagation of optical fields in the curved dielectric slab

The results of the preceding analysis were independently verified using
the Beam Propagation Method. A description of this method is given in the
Appendix.

Computed modal fields are seen 0 propagate without change along the
guiding structure. Figd shows propagated modal fields of the fundamental
and second order modes of a curved slab with core index n = 3.6, cladding
index n“ = 3.4, width D = 3 wm, and mean radius of curvawre R, = 25 wm,
at a wavelength of 0.87 wn. When an arbitrary optical field is imposed on
the curved diclectric slab, more than one guided mode, as well as radiation
modes of the slab are excited. After sufficient propagation distance, radiation
ceases and mode mixing clearly appears. Fig.5 gives the propagated field in a
curved slab with the same parameters as above when excited by the lowest
order mode of a straight similar slab. In (b) of this figure, the field is moni-

tored every ] where L, is the beating length between the two edge guided
modes of the slab as calculated by the methods of section 111

V.Conclusion

Guided mode propagation in strongly guiding, strongly curved diclectric
slabs was investigated. It is found that differences in propagation constant
between modes of such slabs can be controlled by slab curvature over almost
an order of magnitude. An independent verification of the analytically
obtained results was camied out using the Beam Propagation Method. The
analysis presented here completes the comprehensive siudy of curved dielec-
tric slab modes. The BPM algorithm used can also be applied in the study of
coupling, and field evolution in swongly guiding Integrated Optics bends.
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Appendix

The Beam Propagation Method provides a numerical solution o the
- scalar Wave equation using spectral transforms. The scalar Helmholtz

equation can be written as :

3-2-—+v3£=—k,2(n +8n YE (A1)

£
9%

where z is the direction of wave propagation, V? is the Laplacian in e
transverse coordinates, k, is the free space wave number, n is SOme constams
index, and 8n is the deviation of the medium refractive index from =

Neglecting 9—(‘?)- and the non-commutativity of V7 and 8a, and assuming
rd
that 6n < n, equation (A.1) is sausfied if [13]):

2
a—£=_j ++k,n +k,8n} B (A2)
dz (V2 + ka2 + k,n

Solution 10 (A.2) over very small propagation distances takes the form [14]:

: Az vi
E(xyz+Ar) = exp (-jnk, Az) exp sy m)-m_k__ .
‘ o +K,n

v!
cxp[—jlc, on Az] cxp[— -

2 (VEi+kind)+ k,ﬂJ Elxy.z) (A3)

This is equivalent to propagating the ficld a diswnce i‘_,i in a homogencous
medium of index a, through whick the ficld is operatcd upon by a propagator
operator. Then correcting for the phase change resulting from the refractive
index diffefence 8 over the same distance, which is donc by operating a

phasc correction operator on the ficld as calculated aftcr 5;—2 This process is

then repeated afier each step of D, = %‘1
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) Fig.5 The propagated field in a curved slab with core and cladding
Fig4 Propagated modal fields of.mc (a) fundamental, and (b) second refractive indices of 3.6, and 34, a width of 3 pum, and a bending
order modes of a curved slab with the same parameters as those of radius of 25 wm when excited by the furdamental mode of a straight
Fig3 with a width of 3 um, and mean radius of curvature Re= 25 similar slab at a wavelength of 0.87 pm. In (b), the field is monitored
W, ik

every T" where L, is the beating length between the 1wo guided
modes of the slab.
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